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Abstract. This paper presents an approach for simultaneous tracking
and recognition of hierarchical object representations in terms of multi-
scale image features. A scale-invariant dissimilarity measure is proposed
for comparing scale-space features at di�erent positions and scales. Based
on this measure, the likelihood of hierarchical, parameterized models
can be evaluated in such a way that maximization of the measure over
di�erent models and their parameters allows for both model selection and
parameter estimation. Then, within the framework of particle �ltering,
we consider the area of hand gesture analysis, and present a method for
simultaneous tracking and recognition of hand models under variations
in the position, orientation, size and posture of the hand. In this way,
qualitative hand states and quantitative hand motions can be captured,
and be used for controlling di�erent types of computerised equipment.

1 Introduction

When representing real-world objects, an important constraint originates from
the fact that di�erent types of image features will usually be visible depending
on the scale of observation. Thus, when building object models for recognition, it
is natural to consider hierarchical object models that explicitly encode features
at di�erent scales as well as hierarchical relations over scales between these.

The purpose of this paper is to address the problem of how to evaluate
such hierarchical object models with respect to image data. Speci�cally, we will
be concerned with graph-like and qualitative image representations in terms of
multi-scale image features (Crowley and Sanderson 1987, Lindeberg 1993, Pizer
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et al. 1994, Triesch and von der Malsburg 1996, Shokoufandeh et al. 1999, Bret-
zner and Lindeberg 1999), which are expressed within a context of feature de-
tection with automatic scale selection. A dissimilarity measure will be proposed
for comparing such model features to image data, and we will use this measure
for evaluating the likelihood of object models.

Then, within the paradigm of stochastic particle �ltering (Isard and Blake
1996, Black and Jepson 1998, MacCormick and Isard 2000), we will show how
this approach allows us to simultaneously align, track and recognise hand models
in multiple states. The approach will be applied to hand gesture analysis, and we
will demonstrate how a combination of qualitative hand states and quantitative
hand motions captured in this way allows us to control computerised equipment.

2 Hand model and image features

Given an image of a hand, we can expect to detect a blob feature at a coarse scale
corresponding to the palm, while �ngers and �nger tips may appear as ridge and
blob features, respectively, at �ner scales. Here, we follow the approach of feature
detection with automatic scale selection (Lindeberg 1998), and detect image
features from local extrema over scales of normalized di�erential invariants.

2.1 Detection of image features

Given an image f with scale-space representations L(�; t) = g(�; t) � f(�), con-
structed by convolution with Gaussian kernels g(�; t) with variance t, a scale-
space maximum of a normalized di�erential entityDnormL is a point (x; t) where
DnormL(x; t) assumes a local maximum with respect to space x and scale t. To
detect multi-scale blobs, we search for points (x; t) that are local maxima in
scale-space of the normalized squared Laplacian

B�normL = (tr2L)2 =
X

t2 (@xxL+ @yyL)
2 (1)

while multi-scale ridges are detected as scale-space extrema of the following
normalized measure of ridge strength

R�normL = t2((@xxL� @yyL)
2 + 4(@xyL)

2); (2)

where  = 3=4. Each feature detected at a point (x; t) in scale-space indicates
the presence of a corresponding image structure at position x having size t.
To represent the spatial extent of such image structures, we evaluate a second
moment matrix in the neighborhood of (x; t)

� =

Z
�2R2

�
(@xL)

2 (@xL)(@yL)
(@xL)(@yL) (@yL)

2

�
g(�; sint) d� (3)

at integration scale sint proportional to the scale of detected features. Graphi-
cally, this image descriptor is then represented by an ellipse centered at x and
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(a) (b) (c)

Fig. 1. Blob and ridge features for a hand: (a) circles and ellipses corresponding to
the signi�cant blob and ridge features extracted from an image of a hand; (b) selected
image features corresponding to the palm, the �ngers and the �nger tips of a hand;
(c) a mixture of Gaussian kernels associated with the blob and ridge features, which
illustrate how the selected image features capture the essential structure of a hand.

with covariance matrix � = t�norm, where �norm = �=�min and �min is the
smallest eigenvalue of �. Figures 1(a)-(b) show such descriptors obtained from
an image of a hand.

An extension of this approach to colour feature detection is presented in
(Sj�obergh and Lindeberg 2001).

2.2 Hierarchical and graph-like hand models

One idea that we shall explore here is to consider relations in space and over
scales between such image features as an important cue for recognition. To model
such relations, we shall consider graph-like object representations, where the ver-
tices in the graph correspond to features and the edges de�ne relations between
di�erent features. This approach continues along the works by (Crowley and
Sanderson 1987) who extracted peaks from a Laplacian pyramid of an image and
linked them into a tree structure with respect to resolution, (Lindeberg 1993)
who constructed a scale-space primal sketch with an explicit encoding of blob-
like structures in scale-space as well as the relations between these, (Triesch and
von der Malsburg 1996) who used elastic graphs to represent hands in di�erent
postures with local jets of Gabor �lters computed at each vertex, (Shokoufandeh
et al. 1999) who detected maxima in a multi-scale wavelet transform, as well as
(Bretzner and Lindeberg 1999), who computed multi-scale blob and ridge fea-
tures and de�ned explicit qualitative relations between these features.

Speci�cally, we will make use of quantitative relations between features to
de�ne hierarchical, probabilistic models of objects in di�erent states. For a hand,
the feature hierarchy will contain three levels of detail; a blob corresponding to
a palm at the top level, ridges corresponding to the �ngers at the intermediate
level and blobs corresponding to the �nger-tips at the bottom level (see �gure 2).
While a more general approach for modelling the internal state of a hand con-
sists of modelling the probability distribution of the parameters over all object
features, we will here simplify this task by approximating the relative scales
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between all features by constant ratios and by �xing the relative positions be-
tween the ridges corresponding to the �ngers and the blobs corresponding to the
�nger-tips. Thus, we model the global position (x; y) of the hand, its overall size
s and orientation �. Moreover, we have a state parameter l = 1 : : : 5 describing
the number of open �ngers present in the hand posture (see �gure 2b). In this
way, a hand model can be parameterised by X , where X = (x; y; s; �; l).

α

x,y,s

(a)

l=1 l=2

l=4

l=3

l=5

(b)

Fig. 2. Model of a hand in di�erent states: (a) hierarchical con�guration of model
features and their relations; (b) model states corresponding to di�erent hand postures.

3 Evaluation of object model

To recognize and track hands in images, we will use a maximum-likelihood esti-
mate and search for the model hypothesis X0 that given an image I maximizes
the likelihood p(IjX0). There are several ways to de�ne such a likelihood. One
approach could be to relate the model features directly to local image patches.
Here, we will measure the dissimilarity between the features in the model and
the features extracted from image data.

3.1 Dissimilarity between two features

Consider an image feature F (either a blob or a ridge), de�ned in terms of a
position � and a covariance matrix � according to section 2.1. The dissimilarity
between two such features must take into account the di�erence in their posi-
tion, size, orientation and anisotropy. To measure the joint dissimilarity of these
features, we propose to model each such image feature by a two-dimensional
Gaussian function having the same mean and covariance as the original feature

�g(x; �;�) = h(�) g(x; �;�);=
h(�)

2�
p
det(�)

e�
1

2
(x��)0��1(x��); (4)

and compute the integrated square di�erence between two such representations

�(F1; F2) =

Z
R2

(�g(x; �1; �1)� �g(x; �2; �2))
2 dx (5)
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given a normalising factor h(�), which will be determined later so as to give
a scale-invariant dissimilarity measure. The choice of a Gaussian function is
natural here, since it is the function that minimizes the entropy of a random
variable given its mean and covariance. The Gaussian function at each image
point can also be thought of as measuring the contribution of this point to the
image feature. Figure 1(c) illustrates features of a hand represented in this way.

Using the fact that the product of two Gaussian functions is another am-
pli�ed Gaussian function with covariance �̂ = (��1

1 + ��1
2 )�1 and mean �̂ =

�̂(��1
1 �1 +��1

2 �2), the integral in (5) can be evaluated in closed form:

�(F1; F2) =
h2(�1)

4�
p
det(�1)

+
h2(�2)

4�
p
det(�2)

�C
h(�1)h(�2)

q
det(��1

1 ) det(��1
2 )

�
q
det(��1

1 +��1
2 )

(6)
where

C = exp
�
� 1

2 (�
0
1�

�1
1 �1 + �02�

�1
2 �2 � (�01�

�1
1 + �02�

�1
2 )�̂)

�
To be useful in practice, � should be invariant to the joint translations, rotations
and size variations of both features. From (6), it can be seen that �(F1; F2) will
be scale-invariant if and only if we choose h(�) = 4

p
det(�). Thus, we obtain

�(F1; F2) =
1

2�
� C

4

q
det(��1

1 ) det(��1
2 )

�
q
det(��1

1 +��1
2 )

: (7)

It is easy to prove that the dissimilarity measure � in (7) is invariant to joint
rescalings of both features, i.e. �(F1; F2) = �( ~F1; ~F2), where ~F (�;�) = F (��; �2�)
for some scaling factor �. Moreover, � is invariant to simultaneous translations
and rotations of both features. As illustrated in �gure 3, the dissimilarity mea-
sure � assumes its minimum value zero only when the features are equal, while
its value increases when the features start to deviate in position, size or shape.

D

C

A
B

(a) (b)

Fig. 3. Two model features (solid ellipses) and two data features (dashed ellipses) in
(a) are compared by evaluating the square di�erence of associated Gaussian functions.
While the overlapping model (A) and the data (B) features cancel each other, the
mismatched features (C and D) increase the square di�erence in (b).
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3.2 Dissimilarity of model and data features

Given two sets Fm;Fd with Nm model and Nd data features respectively, we
consider the model and the data as two mixtures of Gaussian distributions

Gm =

NmX
i

�g(x; �mi ; �
m
i ); Gd =

NdX
i

�g(x; �di ; �
d
i );

where �g(x; �mi ; �
m
i ) and �g(x; �di ; �

d
i ) are normalized Gaussian functions associ-

ated with model and data features as de�ned in (4). In analogy with the dissim-
ilarity between two features, we de�ne the dissimilarity between the model and
the data by integrating the square di�erence of their associated functions:

�(Fm;Fd) =

Z
R2

(Gm �Gd)2 dx: (8)

By expanding (8) we get

�(Fm;Fd) =

NmX
i

NmX
j

Z
R2

�gmi �gmj dx

| {z }
Q1

+

NdX
i

NdX
j

Z
R2

�gdi �g
d
j dx

| {z }
Q2

� 2

NmX
i

NdX
j

Z
R2

�gmi �gdj dx

| {z }
Q3

whose computation requires comparisons of all feature pairs. We can note, how-
ever, that overlap between the features within a model will be rare, as will
overlaps be between features in the data. Therefore, we do the approximations

Q1 �

NmX
i

Z
R2

(�gmi )
2 dx; Q2 �

NdX
i

Z
R2

(�gdi )
2 dx; Q3 � 2

NmX
i

Z
R2

�gmi �gdki dx; (9)

where �gdki corresponds to the data feature F d
ki

closest to the model feature Fm
i

with regard to the dissimilarity measure �. In summary, we approximate � by

�(Fm;Fd) �

NmX
i=1

�(Fm
i ; F d

ki) +
Nd �Nm

4�
; (10)

where � is the dissimilarity measure between a couple of features according to
(7), Fm

i ; i = 1::Nm are the features of the model and F d
ki
; i = 1::Nm are the

data features, where F d
ki

matches best with Fm
i among the other data features.

The dissimilarity measure � characterizes the deviation between model and
data features. It is dual in the sense that it considers the distance from model
features to data features (o�set criterion) as well as the distance from data fea-
tures to model features (outlier criterion). The simultaneous optimization with
respect to these two criteria is important for locating an object and recognizing
it among the others. To illustrate this, consider the matching of a hand model
in states with one, two and three open �ngers l = 1; 2; 3 (see �gure 2(b)) to
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an image of a hand as shown in �gure 1(a). If we match according to an o�set
criterion only, hypotheses with one and two open �ngers (l = 1; 2) will have the
same �tting error as a hypothesis with three open �ngers (l = 3). Thus, the
o�set criterion alone is not suÆcient for the correct selection of a hand state. To
solve the problem, we must require the best hypothesis to also explain as much
of the data as possible by minimizing the number of mismatched data features
(outlier criterion). This will result in a hypothesis that best �ts and explains the
data, i.e. the hypothesis with the correct state l = 3.

3.3 Likelihood

To �nd the best hypothesis of a hand X0, we will search for the minimum of
the dissimilarity measure � in (10) over X . For the purpose of tracking (using
particle �ltering as will be described in section 4), it is more convenient, however,
to maximize a likelihood measure p(IjX) = p(FdjFm) instead. Thus, we de�ne
a likelihood function as

p(FdjFm) = e��(F
m;Fd)=2�2 ; (11)

where the parameter � = 10�2 controls the sharpness of the likelihood function.

4 Tracking and recognition

Tracking and recognition of a set of object models in time-dependent images can
be formulated as the maximization of a posterior probability distribution over
model parameters given a sequence of input images. To estimate the states of
object models in this respect, we will follow the approach of particle �ltering to
propagate object hypotheses over time, where the likelihood of each particle is
computed from the proposed likelihood and dissimilarity measures (10) and (11).

To a major extent, we will follow traditional approaches for particle �ltering
as presented by (Isard and Blake 1996, Black and Jepson 1998, Sidenbladh et
al. 2000, Deutscher et al. 2000) and others. Using the hierarchical multi-scale
structure of the hand models, however, an adaptation of the layered sampling
approach (Sullivan et al. 1999) will be presented, in which a coarse-to-�ne search
strategy is used to improve the computational eÆciency, here, by a factor of two.
Moreover, it will be demonstrated how the proposed dissimilarity measure makes
it possible to perform simultaneous hand tracking and hand posture recognition.

4.1 Particle �ltering

Particle �lters aim at estimating and propagating the posterior probability dis-
tribution p(Xt; Ytj~It) over time, where Xt and Yt are static and dynamic model
parameters and ~It denotes the observations up to time t. Using Bayes rule, the
posterior at time t can be evaluated according to

p(Xt; Ytj~It) = k p(ItjXt; Yt) p(Xt; Ytj~It�1); (12)
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where k is a normalization constant that does not depend on variablesXt,Yt. The
term p(ItjXt; Yt) denotes the likelihood that a model con�guration Xt, Yt gives
rise to the image It. Using a �rst-order Markov assumption, the dependence on
observations before time t�1 can be removed and the model prior p(Xt; Ytj~It�1)
can be evaluated using a posterior from a previous time step and the distribution
for model dynamics according to

p(Xt; Ytj~It�1) =

Z
p(Xt; YtjXt�1; Yt�1) p(Xt�1; Yt�1j~It�1) dXt�1 dYt�1: (13)

Since the likelihood function is usually multi-modal and cannot be expressed in
closed form, the approach of particle �ltering is to approximate the posterior dis-
tribution using N particles, weighted according to their likelihoods p(ItjXt; Yt).
The posterior for a new time moment is then computed by populating the par-
ticles with high weights and predicting them according to their dynamic model
p(Xt; YtjXt�1; Yt�1).

4.2 Hand tracking and recognition

To use particle �ltering for tracking and recognition of hierarchical hand models
as described in section 2, we let the state variable X denote the position (x; y),
the size s, the orientation � and the posture l of the hand model, i.e., X =
(x; y; s; �; l), while Y denotes the time derivatives of the �rst four variables,
i.e., Yt = ( _x; _y; _s; _�). Then, we assume that the likelihood p(ItjXt; Yt) does not
explicitly depend on Yt, and approximate p(ItjXt) by evaluating p(FdjFm) for
each particle according to (11). Concerning the dynamics p(Xt; YtjXt�1; Yt�1) of
the hand model, a constant velocity model is adopted, where deviations from the
constant velocity assumption are modelled by additive Brownian motion, from
which the distribution p(Xt; YtjXt�1; Yt�1) is computed. To capture changes in
hand postures, the state parameter l is allowed to vary randomly for 30 % of the
particles at each time step.

When the tracking is started, all particles are �rst distributed uniformly over
the parameter spaces X and Y . After each time step of particle �ltering, the best
hypothesis of a hand is estimated, by �rst choosing the most likely hand posture
and then computing the mean of p(Xt; Ytj~It) for that posture. Hand posture
number i is chosen if wi = maxj(wj); j = 1; : : : ; 5, where wj is the sum of
the weights of all particles with state j. Then, the continuous parameters are
estimated by computing a weighted mean of all the particles in state i.

4.3 Hierarchical layered sampling

The number of particles used for representing a distribution determines the speed
and the accuracy of the particle �lter. Usually, however, most of the particles
represent false object hypotheses and serve as to compensate for uncertainties
in the estimated distribution. To reduce the number of such particles, and thus
improve the computational eÆciency, one approach is to divide the evaluation
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of the particles into several steps, and to eliminate unlikely particles already at
the earliest stages of evaluation. This idea has been used previously in works
on partitioned sampling (MacCormick and Isard 2000) and layered sampling
(Sullivan et al. 1999).

The layered sampling implies that the likelihood function p(ItjXt) is decom-
posed as p = p1 p2. . . pn and that false hypotheses are eliminated by re-sampling
the set of particles after a likelihood pi(ItjXt) has been evaluated at each layer
i = 1. . .n. The idea is to use a coarse-to-�ne evaluation strategy, where p1 evalu-
ates models at their coarsest scale, while pn performs the evaluation at the �nest
scale.

In the context of hierarchical multi-scale feature models, the layered sam-
pling approach can be modi�ed such as to evaluate the likelihoods pi(ItjXt)
independently for each level in the hierarchy of features. Hence, for the hand
model described in section 2, the likelihood evaluation is decomposed into three
layers p = p1 p2 p3, where p1 evaluates the coarse scale blob corresponding to
the palm of a hand, p2 evaluates the ridges corresponding to the �ngers, and p3
evaluates the �ne scale blobs corresponding to the �nger tips.

Experimentally, we have found that the hierarchical layered sampling ap-
proach improves the computational eÆciency of the tracker by a factor two,
compared to the standard sampling method in particle �ltering. Figure 4 illus-
trates a comparison between these two approaches concerning the performance of
hand posture recognition step of the tracker { see (Laptev and Lindeberg 2000)
for a more extensive description.

Hierarchical layered sampling Standard sampling

t

P

t

P

Fig. 4. Curves representing probabilities of model states l = 1; :::; 5 while tracking a
hand with changing postures. The results are shown for the hierarchical vs. the standard
sampling technique, using the same number of particles.

5 Hand gesture analysis

An application we are interested in is to track hands in oÆce and home environ-
ments, in order to provide the user with a convenient human-machine interface
for expressing commands to di�erent types of computerized devices using hand
gestures. The idea is to associate the recognised hand states with actions, while
using the estimated continuous parameters of the hand model to control the
actions in a quantitative way.

The problem of hand gesture analysis has received increased attention in
recent years. Early work of using hand gestures for television control was pre-
sented by (Freeman & Weissman 1995) using normalised correlation. Some ap-
proaches consider elaborated 3-D hand models (Regh and Kanade 1995), while
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others use colour markers to simplify feature detection (Cipolla et al. 1993).
Appearance-based models for hand tracking and sign recognition were used by
(Cui and Weng 1996), while (Heap and Hogg 1998, MacCormick and Isard 2000)
used silhouettes of hands. Graph-like and feature-based hand models have been
proposed by (Triesch and von der Malsburg 1996) for sign recognition and in
(Bretzner and Lindeberg 1998) for tracking and estimating 3-D rotations of a
hand.

The proposed approach is based on these works and is novel in the respect
that it combines a hierarchical object model with image features at multiple
scales and particle �ltering for robust tracking and recognition.

5.1 Multi-state hand tracking

To investigate the proposed approach, an experiment was performed of track-
ing hands in di�erent states in an oÆce environment with natural illumination.
The particle �ltering was performed with N = 1000 particles, which were evalu-
ated on the Nd = 200 strongest scale-space features extracted from each image.
Figures 5(a)-(c) show a few results from this experiment. As can be seen, the
combination of particle �ltering with the dissimilarity measure for hierarchical
object models correctly captures changes in the position, scale and orientation
of the hand. Moreover, changes in hand postures are captured.

Size variations

(a)

Rotations

(b)

State change

(c)

Fig. 5. Result of applying the proposed framework for tracking a hand in an oÆce
environment. (a): size variations; (b) rotations; (c): a change in hand state l : 5! 2.

As a test of the stability of the hand tracker, we developed a prototype of a
drawing tool called DrawBoard, where hand motions are used for controlling a
visual drawing in a multi-functional way. In this application, the cursor on the
screen was controlled by the position of the hand, and depending on the state of
the hand, di�erent actions could be performed. A hand posture with two �ngers
implied that DrawBoard was in a drawing state, while a posture with one �nger
meant that the cursor moved without drawing. With three �ngers present, the
shape of the brush could be changed, while a hand posture with �ve �ngers
was used for translating, rotating and scaling the drawing. Figure 6 shows a few
snapshots from such a drawing session.1 As can be seen from the results, the
performance of the tracker is suÆcient for producing a reasonable drawing.

1 A longer movie clip is available from http://www.nada.kth.se/cvap/gvmdi/.
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Drawing with a pencil of varying size

(a)

Changing the shape of the pencil

(b)

Drawing with the elliptic pencil

(c)

Rotating the drawing

(d)

Fig. 6. DrawBoard. The hand is used as a drawing device where the position, the size
and the orientation of a pencil are controlled by the corresponding parameters of a
hand in the image (a),(c). In (b) the user is able to change the elliptic shape of a pencil
by rotating a hand in a state with three open �ngers. In (d) the drawing is scaled and
rotated with a hand in a state with �ve open �ngers.

A necessary pre-requisite for this purely intensity-based system to give sat-
isfactory results is that there is a clear contrast in intensity between the object
and the background. In on-going work, it is shown that the sensitivity to the
choice of background can be reduced substantially by (i) performing colour-
based feature detection, and by (ii) including a complementary prior on skin
colour. In a project for computer-vision-based human-computer-interaction, this
extended system is used for capturing hand gestures controlling di�erent types
of computerized equipment (Bretzner et al. 2001).

The integrated algorithm currently runs at about 10Hz frame rate on a mod-
est dual processor PC with two 550MHz Pentium III processors. An important
component in reaching real-time performance is an eÆcient pyramid implementa-
tion of the multi-scale feature detection step (Lindeberg and Niemenmaa 2001).

6 Summary and discussion

We have demonstrated how a view-based object representation in terms of a hi-
erarchy of multi-scale image features can be used for tracking and recognition in
combination with particle �ltering, based on a scale-invariant dissimilarity mea-
sures, which relates features in the object representation to image data and en-
ables discrimination between di�erent spatial con�gurations. The combination of
this measure with multi-scale features makes the approach truly scale-invariant
and allows for object tracking and recognition under large size variations.
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In an application to hand gesture analysis, we have shown how qualitative
states and quantitative motions of a hand can be captured. In this context, the
use of a hierarchical multi-scale model allows us to perform hierarchical layered
sampling, which improves the computational eÆciency by reducing the number
of particles.

In combination with a pyramid implementation of the feature detection stage,
real-time performance has been obtained, and the system has been tested in ap-
plication scenarios with human-computer interaction based on hand gestures. In
this context, the qualitative hand states were used for selecting between di�erent
actions, while the continuous parameters were used for controlling these actions
in a quantitative way.

Although a main emphasis here has been on hand models, we believe that the
proposed framework can be extended for tracking and recognizing broader classes
of objects consisting of qualitatively di�erent structures at di�erent scales.
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