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Abstract: We present a computational model for attention. Key points in our model are
the use of multiple cues, the use of depth and that the model can be implemented by simple
computations. We show experimentally that the model provides expected results for a given
control scheme for target selection based on nearness and motion. In particular this also
demonstrates that sufficient information for our model is computable by simple algorithms.
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1 Introduction

The notion of attention plays an important role in biological vision. In recent years, and
especially with the emerging interest in active vision, computer vision researchers have been
increasingly concerned with attentional mechanisms as well, see (Tsotsos et al., 1995; Wolfe
and Cave, 1990; Syeda-Mahmood, 1992) for a few examples. The basic principles behind
these efforts are greatly influenced by psychophysical research. That is the case also in the
work presented here, which adapts to the model of Treisman (1985), with an early parallel
stage with preattentive cues followed by a later serial stage where the cues are integrated.

In our case, we base the model on disparity, image flow, and motion. A schematic diagram
of our framework is shown in Figure 1. In this scheme cue integration and attention over
time are essential aspects. Part of the cue integration work has appeared in (Uhlin et al.,
1995). The contribution here is that we show that the system can attend to different targets
in a purposive way in a cluttered environment. A second key point in this context is the
use of depth information, as suggested is done in human vision by Nakayama and Silverman
(1986). The computation of precise depth information is generally a time consuming task.
A third important point of this work is therefore that a functioning system capable of se-
lectively attending different objects can be obtained with rather simple algorithms allowing
fast implementations. This is demonstrated by experiments in which a moving or stationary
binocular observer (a mobile platform with a head-eye system) selectively masks out different
moving objects in real scenes and holds gaze on them over some frames. The selection criteria
are here based on nearness and motion, but could in our open architecture be of any type.
The important thing to note is that the required information is indeed computable and that
the system’s behavior is the desirable one.
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Figure 1: A schematic diagram of the proposed attentional framework. It follows the general concept

of visual attention, i.e., the early parallel stage with preattentive cues and the later serial stage where

the cues are integrated. The diamonds indicate a one frame delay.

2 Early modules

This section describes the preattentive cues employed in the early parallel stage: stereo
disparity, image flow and motion detection, which are integrated in the later serial stage.

2.1 Stereo disparity

Relative depth, that plays a central role in our model, is derived from a dense disparity map.
As disparity estimator we employ a phase-based algorithm which has the advantages of low
computational cost, stability against varying lighting condition and especially of allowing
good direct localization of the estimated disparity. The disparity estimation algorithm is
found in Appendix A.1. A target mask is produced by back projection of a selected target
disparity and the process of disparity selection is based on histogramming and disparity
prediction. The idea is to slice up the scene according to relative-depth and then segment
out the part of the input image corresponding to the selected target as a mask. See Appendix
A.2 and (Maki and Uhlin, 1995) for details of the procedure producing the target mask. A
point to be noted is that the resulting mask may well involve multiple targets if they are
observed to be close to each other in depth. Further segmentation among such targets is
beyond the performance of the depth cue alone and some additional information sources
would be necessary to handle such a situation.



2.2 Image flow

By applying the stereo algorithm to consecutive image frames instead of to a stereo image
pair, information of horizontal image flow can be obtained. The image flow cue provides
another target mask independent of the depth cue, and those cues are combined in order to
deal with complex scenes where multiple target candidates are observed. Information about
image flow could be made available in more specific form and as a matter of fact it could
be by itself a central cue in terms of attending to moving objects (Murray et al., 1995). In
our scheme, however, the use of image flow cue is only in one-dimension along the horizontal
direction, because by doing so this early module can share identical input with the depth
module. This additional module is in our experiments shown to stabilize the attentional
performance a great deal, in spite of its simplicity.

2.3 Motion detection

As the third module in the early preattentive stage, a technique for motion detection is
employed. The fundamental concept is outlined here. The idea is to exploit the brightness
constancy constraint in conjunction with an affine transformation between two consecutive
images. Assuming the moving target to be relatively small compared to the background,
we compute an affine fit between two consecutive images by posing a weighted least squares
minimization problem. Given that the background contains small variations in depth and is
far away enough, relative to the motion, the background cancels in the residual image and
moving objects appear. The technique is formulated in Appendix A.3 and full description is
found in (Nordlund and Uhlin, 1995).

3 Cue integration

Given information from the early stage in the form of stereo disparity, image flow estimation
and detected motion, the role of the later stage is to guide the attention to an appropriate
part of the input image. This guidance is achieved by combination of the different early cues
in two independent modes, namely the pursuit and saccade modes, each of which produces a
target mask. As a criterion to choose the final attentional target mask, depth-based target
selection is considered.

3.1 Pursuit mode

The objective in the pursuit mode is to keep attending to the current target and mask the
corresponding part of the input image accordingly. The framework of the process in this
mode is schematically depicted in Figure 2 using the following notation at frame number k,
Tp(k) : Target pursuit mask, Tq(k) : Target mask based on stereo disparity, Ty(k) : Target
mask based on image flow, and T'(k — 1) : Target mask in the previous frame. Taking the
disparity and flow maps as inputs from the early stage, it returns a target pursuit mask 7, (k)
as output.

As described earlier, the disparity target mask Ty(k) is produced by a disparity selection
technique based on histogramming and back projection. The information of image flow is
processed in an analogous framework, that is, a one-dimensional histogram is constructed for
the horizontal flow map and a flow target mask Tf(k) is produced by back projection of a
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Figure 2: Schematic flow diagram of the attentional pursuit. It composes part of the “cue integration”
in the framework shown in Figure 1. The diamonds indicate a one frame delay in the feedback. The
circles with & indicate a logical and operation. See Appendix A.2 for the process of histogram and
prediction.

flow parameter that is also selected based on prediction. To summarize, from each of the
disparity and flow maps a target mask is produced and those masks are fused with a logical
and operation into the target pursuit mask 7),(k) so that just the part which is consistent
with both disparity and flow remains. The process in frame k can be formulated as:

Tp(k) = Ta(k)NTy(k) (1)

3.2 Saccade mode

The saccade mode on the other hand is aimed at disengaging the attention from the current
target and shift it to a new one. The framework of the process in this mode is schematically
depicted in Figure 3 using the following notation at frame k, T(k) : Target saccade mask,
T (k) : Target mask based on detected motion, and T'(k — 1) : Target mask in the previous
frame. While the disparity cue again plays the central role here, the important feature is
that a shift is triggered when a new interesting part in the input is detected. The definition
of “interesting part” can be task dependent and any distractor among available alternatives
could in principle trigger an attentional shift. Here we have chosen only motion relative to the
background, since it provides a strong saccadic cue and therefore allows us to demonstrate
our framework.

As is the case in the pursuit mode, a target saccade mask T(k) is produced basically by the
disparity selection and serial back projection. The previous target mask T'(k — 1) is, however,
utilized differently, i.e., in the saccade mode T'(k — 1) is inversely applied, so that the current
target is inhibited instead of accepted as contribution to the disparity histogram. Besides,
the use of disparity information as input is restricted to the part where relative motion to
the background is detected. The disparity histogram then carries information just about a
newly detected moving target. The process is completed by inhibiting the produced target
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Figure 3: Schematic flow diagram of the attentional saccade. It composes part of the “cue integration”
in the framework shown in Figure 1. The circles with & indicate a logical and operation. See Appendix
A2 for the process of histogram and prediction.

mask again by T'(k — 1) to make sure that the resulting target saccade mask Ts(k) does not
overlap the former target. The process in frame k can be summarized as:

T,(k) = Tu(k)NT(k—1) (2)

It should be noted that the framework of the saccade mode without feedback of the former
target mask exactly provides a mode to initiate the process by finding the moving target to
attend to. This also applies to picking up a new moving target and to restart the process in
case the pursuit mode for some reason lost track of the target, e.g., when the target disappears
from the scene.

3.3 Depth-based target selection

The cue integration process described so far provides a pursuit mask T,(k) and a saccade
mask T,(k) and the choice among those masks is the remaining issue, which is rather task
dependent. Some criterion is needed to decide when the saccade should happen or pursuit
should continue and thereby to determine the final target mask T'(k) in each frame (see
Figure 4). While the framework introduced is open to accept different criteria, we here
have considered a depth-based attentional scheme where the target that is closer in depth is
selected with higher priority, see equation (3). Such a criterion is reasonable for instance for
a moving observer that wants to avoid obstacles. The target saccade mask is selected when
the newly detected target turns out to be closer, or the current target disappears from the
scene, and thus the closest moving object is kept on attended as a target over time.

_ Ts(k), for d, < d,
Tk) = { Tp(k),  otherwise (3)
ds : Disparity of newly detected target
d, : Disparity of the current target
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Figure 4: Attentional target. In each frame either target pursuit or target saccade mask is selected
as the final target mask according to a criterion. For example in the depth-based criterion the mask
covering the closer target is selected on the basis of the comparison between the disparity of the
current target d, and that of newly detected target d;.

4 Experiments

The above described attentional scheme has been examined through experiments. Figure
5 seen by a stationary binocular camera head shows a sample image sequence. It includes
three persons walking around in a laboratory. Every 10th frame is shown (images are taken
at framerate 25 Hz). Disparity maps, certainty maps, horizontal flow maps and detected
motion maps are shown in Figure 6 - Figure 9. The gray scale in those maps is not necessar-
ily consistent throughout the frames since it is scaled in the range between the highest and
lowest values in each frame respectively. By relative depth and flow information, however,
parts of the maps corresponding to the persons in the scene are recognized in each frame. The
resulting target masks are shown in Figure 10 where it is observed that the closest moving
object is kept on attended.

Figure 11 shows another sample image sequence, this time by moving cameras (Pahlavan and
Eklundh, 1992). It includes two persons walking in a laboratory, one tracked at the center of
the image, and the other appearing on the right hand side, passing by in front and disappear-
ing on the left end, while the observing camera head is moving laterally. Every 10th frame
is shown (images are taken at framerate 25 Hz). Figure 12 shows that the motion detection
process functions even for a sequence with moving cameras. The resulting target masks are
shown in Figure 13, where it is observed that the closest moving object is kept attended to.

Figure 14 exemplifies the process by which the target mask is selected. Illustrated are the
magsks restricting the input to the disparity histogram, two histograms in pursuit and saccade
modes, and the target mask superimposed on the original input image. They are shown for
three consecutive frames, k — 1,k and k+ 1 (left, middle and right) to clarify the information
flow between frames. A detailed description of the process along the frames is as follows.



Figure 5: An example sequence with 3 moving persons taken by a statlonary binocular camera head.
Every 10th frame of the left image is shown (40 msec between frames).
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Figure 6: Disparity maps computed for the sequence in Figure 5. The darker, the closer.

Figure 7: Certainty maps computed corresponding to the disparity map shown in Figure 6. The

lighter, the higher certainty.
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Figure 8: Horizontal flow maps computed for the sequence in Figure 5. The lighter, the more leftward.
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Figure 10: Target masks computed for the sequence in Figure 5.



Figure 11: An example sequence with 2 moving persons taken by a moving binocular camera head.
Every 10th frame of the left image is shown (40 msec between frames).
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Figure 12: Detected motion for the sequence in Figure 11. The darker, the stronger

Figure 13: Target masks computed for the sequence in Figure 11.
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(a) Detected motion masks (dark) and target masks in the former frame (gray).
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(b) Disparity histograms in pursuit mode based on the former target mask.
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(c) Disparity histograms in saccade mode based on newly detected motion.

(d) The resulting target masks superimposed on the original image sequence.

Figure 14: The process producing the target masks in frame k — 1, k, k + 1 (left, middle, right). The
horizontal and vertical axes in the histograms are for disparity estimates and sum of corresponding
certainty values.
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Frame k — 1: the disparity histogram in pursuit mode based on the former target mask
provides the current target disparity, d, = 13, while that in saccade mode based on
the newly detected moving target provides the disparity of the new target candidate’,
ds = 13. Since d; = dp, the new candidate is no closer than the current target, and the
pursuit target mask is selected as the final target mask.

Frame k: Pursuit and saccade disparities in this frame are d, = 13 (target person staying
at the same depth) and d; = 12 (the second person approaching closer). Since dy < d,
the saccade target mask is selected, i.e., attentional shift takes place. Notice that the
former target mask T'(k — 1) is fed back.

Frame k + 1: Analogously d, = 12 and d; = 13 since the attention has been shifted in
previous frame. The pursuit target mask is selected since ds > d, and the attention
stays on the second person.

Continuous processes such as above are conducted to determine the target mask in each
frame, providing the clue to the attentional target throughout sequence of images.

5 Conclusion

We have presented a computational model for visual attention with an early parallel stage
with preattentive cues followed by a later serial stage where the cues are integrated. Key
points in our model are:

e the use of multiple cues, i.e., stereo, image flow and motion,
e the use of relative depth as a target selection criterion,
e that the model can be implemented by simple computations.

We have shown experimentally that the model provides expected results for a given control
scheme for target selection based on nearness and motion. In particular this also demon-
strates that sufficient information for our model is computable by simple algorithms. Our
model therefore shows promise as a basis for investigating the “where to look next” problem
more generally.
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!The small peak observed beside the main peak in saccade mode is arising from the leg of the table that
is incidentally detected by the motion detection module.
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A Appendix

A.1 Phase-based algorithm

Disparity map The fundamental idea of the phase-based approach to disparity estimation
is to recover local disparity as the spatial shift from the local phase difference observed in the
Fourier domain. In practice, the phase is extracted by taking the argument of the convolution
product Vj(x) and V,(x), which is produced at each point x in the image by convolving a
complex filter? with the left and the right stereo images3. As the local shift between stereo
images is approximately proportional to the local phase difference, a disparity estimate at
each point in the image is derived accordingly:

D(x) =~ [arg Vi(x) —arg V;(x)]/w(x)-. (4)

D(x) denotes disparity at x and w(x) represents some measure of underlying frequency of the
image intensity function in the neighborhood of x, which in this case is computed as phase
derivative. For details on the techniques employed here, see (Maki et al., 1993).

Certainty map In order to check the feasibility of the estimated disparity and threshold
unreliable estimation, we also compute a certainty value C(x) defined on the basis of the
magnitude of the convolution product:

2VIVil [Vr|

T

(5)

A.2 Disparity selection

Disparity-certainty histogram Based on a disparity map D(x) and a certainty map
C(x), we compute a histogram H (D) with respect to the discrete disparities Dg:

H(Dg) = 3" C(x) for {(x) | Dy < D(x) < Ds1}- (6)
H(Dy) is defined as the sum of the certainty values at the pixels where the disparity is

estimated to Dy. Multiple peaks appear in the histogram corresponding to objects with
different disparities.

Disparity prediction With a prediction of what disparity the target should have, the
closest peak in the histogram can be selected as the estimate of the target disparity. For

computational simplicity a linear predictor is used with a weighting factor o*:
Dyp(k+1) = Ds(k)+ P(k) (7)
P(k) = a-(Ds(k) —Ds(k—-1))+(1—a) - P(k—1) (8)

where Dg(k) and D,(k) represent the selected and predicted disparity at frame number &k
while P(k) denotes the predicted change.

2We employ discrete approximations to the first and second derivatives because of their computational
simplicity.

3Two consecutive images are used instead when it is to derive horizontal image flow.

40 < @ <1, in the experiments « is set to be 0.2 to attenuate the influence of noise.

12



A.3 Brightness constancy and affine image velocity

Brightness constancy Using the notation I, = %, I, = alé’y"t),lt = 01((;;,7&) and

VI(x,t) = (Iy(x,t), I,(x,t))”, the brightness constancy can be written as,

VI(x,t)-v(x,t) + Li(x,t) =0 (9)

where v = (fli—‘f, %)T is the image velocity. This equation is not enough to constrain the
two parameters of v, given the gradients (VI), and the time derivatives (I;). What can be

determined though, is v’s component normal to the gradient, the normal image velocity.
Residual normal velocity calculation From equation (9) we can determine the normal
component of the velocity vector locally as:

_ Li(x)
\VI(x)|

Up(x) = . (10)

With an arbitrary velocity field, v(x), and the gradients in an image, we can write the normal
velocity as:

_ VI(x)-v(x)
N 7 e ty

and define the residual between this and the observed normal velocity as:

VI(x) - v(x) + Ii(x)
[VI(x)]

R(x) = 9(x) — vp(x) = (12)

Solving for the affine image velocity To solve for a velocity field we must use a model
for the same, and if we let v be parameterized with u, giving v = v(u,x), we can pose a
weighted least squares minimization problem to solve for u,

min = > w(x)R(u,x)? (13)
x€EN

where € is a region of interest in the image where the parameterized velocity model should
hold.

The affine velocity model We model the image velocity, v as one affine motion for an
image region ). The number of parameters are then 6 which yields,

a+bx+cy

v(u,x) = B(x)u = d+ e+ fy

(14)

u:(a,baC,daeaf)T’ B(X):[l 001 2 d|

0001z y

where a,b,c,d, e, f are unknown scalar constants.
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Solving for the affine motion parameters The weighting function w in the minimization
in Equation (13) is chosen as the gradient magnitude squared, i.e. w(x) = VI(x)2. Then we
have the following minimization problem,

min Z (VI(x) - ¥(u,x) + I;(x))>. (15)
xXEN
By using equations (14) and (15), a region Q = {xi,...,X,}, and measurements of the

gradients and time derivatives in the image, we get the following linear equation system,

VIvu=v"q (16)
where
Ii(x1) Ip(x1)z1 Lp(xi)yr Iy(x1) Iy(xi)zr Iy(x1)y —Iy(x1)
v = : : : : : : and ¢= :
In(xp) Ip(xn)zn Ip(xn)yn Iy(xn) Iy(xn)zn Iy(Xn)yn —Ii(xp)

Which is a 6 X 6 symmetric positive semi-definite system, with the 6 elements of u as
unknowns, shown explicitly in equation (17). It becomes definite as soon as there are more
than one gradient direction present in the region over which the minimization is performed.

> I% EI.%‘II" EIa%y ZIny ZIwafL' ZImey 1 [a] (Y L,
S I222 Y 2zy Y LIy Y LIya? Y LIyzy| |b S LIz
ZI§y2 ZIzIyy ZIzIy-Ty EIzIyy2 cl_ > Lily
ZIg S I2z ZIgy d| > I, (17)
symmetric I z? 3 Igwy e > Lilyx
I Sy ] L] | I,y |

With all the sums performed over the region to which we want to fit the model.
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