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Abstract. This article presents a scale-space theory for spatio-temporal
data. Starting from the main assumptions that (i) the scale-space should
be generated by convolution with a semi-group of �lter kernels and that
(ii) local extrema must not be enhanced when the scale parameter in-
creases, a complete taxonomy is given of the linear scale-space concepts
that satisfy these conditions on spatial, temporal and spatio-temporal
domains, including the cases with continuous as well as discrete data.

1 Introduction

When analysing sensory data such as images, a fundamental constraint arises
from the fact that real-world objects may appear in di�erent ways depending
upon the scale of observation. This insight is a major motivation for the de-
velopment of multi-scale representations such as pyramids (Burt 1981; Crowley
1981) and scale-space representation (Witkin 1983; Koenderink 1984; Yuille and
Poggio 1986; Koenderink and van Doorn 1992; Florack 1993; Lindeberg 1994b).

Traditionally, however, most works on multi-scale representations have been
concerned with image data de�ned on spatial domains , for which image data are
accessible in all directions. (Notable exceptions are presented in (Koenderink
1988; Lindeberg and Fagerstr�om 1996) and will be discussed later.) The world
around us, on the other hand, gives rise to spatio-temporal data, in which time
plays a very special role and the future cannot be accessed. Moreover, the struc-
ture of spatio-temporal data is usually special, in the sense that most real-world
object tend to persist over time in a coherent manner.

The subject of this article is to develop a scale-space theory for such spatio-
temporal image domains, to enable a visual agent to register spatio-temporal
events at multiple spatial and temporal scales in a well-founded manner.

Technically, we shall start from a previously stated scale-space formulation
in terms of non-enhancement of local extrema, and relax the symmetry require-
ments that have been used in previous applications of this scale-space axiom.

? Earlier version presented in Proc. First Int. Conf. Scale-Space'97 (B. M. ter Haar
Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, eds.), vol. 1252
of Lecture Notes in Computer Science, (Utrecht, The Netherlands), pp. 113{127,
Springer Verlag, Berlin, July 1997.



Examples of phenomena which will be captured by the resulting frame-
work include: (i) spatial shifting mechanisms without need for external warping,
(ii) time-causal scale-space �lters not extending into the future, and (iii) non-
separable and elongated �lter kernels over space and time, which allow for shape
adaptation in space and velocity adaptation in the direction of motion.

2 Non-enhancement of local extrema: Continuous signals

When (Koenderink 1984) derived the uniqueness of the Gaussian kernel for gen-
erating a scale-space representation on a continuous spatial domain, he expressed
a causality requirement, stating that new level curves must not be created with
increasing scales. Then, when (Lindeberg 1990) derived a scale-space theory for
discrete image domains, he reformulated this condition as follows:

Non-enhancement of local extrema: If for some scale level s0 a point x0
is a non-degenerate local maximum for the scale-space representation at
that level (regarded as a function of the space coordinates only) then its
value must not increase when the scale parameter increases. Analogously,
if a point is a non-degenerate local minimum then its value must not
decrease when the scale parameter increases.

(Lindeberg 1990) also imposed a semi-group structure on the family of convolu-
tion kernels, and used a result from functional analysis (Hille and Phillips 1957),
stating that a semi-group structure, combined with strong continuity with re-
spect to scale, implies that the scale-space family must have an in�nitesimal

generator . In other words, if a transformation operator Ts from the input signal
f to the scale-space representation L(�; s) at any scale s is de�ned by

L(�; s) = Tsf(�); (1)

then under reasonable regularity requirements there exists a limit case Af =
limh#0

Thf�f
h of this operator (the in�nitesimal generator) such that the scale-

space family satis�es the di�erential equation

@sL(�; s) = lim
h#0

L(�; t+ h)� L(�; t)
h

= A(Tsf(�)) = AL(�; s): (2)

It was shown that this structure, combined with non-enhancement of local ex-
trema, strongly restricts permissible classes of isotropic scale-space operators.

The main subject of this article is to analyse the consequences of impos-
ing similar constraints on spatial, temporal and spatio-temporal domains under
weaker symmetry requirements.

2.1 Continuous domain

On a continuous domain, it is natural to formalize the non-enhancement require-
ment of local extrema in terms of a sign condition on the derivative of the scale-
space family with respect to the scale parameter. Hence, at any non-degenerate



extremum point (extremum point where the determinant of the Hessian matrix
is non-zero) we require the following conditions to hold:

@sL < 0 at a non-degenerate local maximum; (3)

@sL > 0 at a non-degenerate local minimum: (4)

In (Lindeberg 1994a) it is shown that a linear and shift-invariant in�nitesimal
generator A satisfying these requirements must be a linear combination of �rst-
and second-order derivatives, where the second-order terms correspond to an
elliptic di�erential operator and the �rst-order terms are arbitrary.

Rotationally symmetric linear scale-space. If rotational symmetry is added to
this structure, it follows that A has to be proportional to the Laplacian operator,
and the scale-space family corresponds to convolution with Gaussian kernels.

AÆne Gaussian scale-space. If we relax the condition about rotational symme-
try, while keeping a requirement that the corresponding Green's function should
be mirror symmetric in every line through the origin (i.e., to avoid spatial shifts,
its Fourier transform should be real), we obtain the aÆne Gaussian scale-space

representation generated by convolution with non-uniform Gaussian kernels

g(x; �s) =
1

(2�)D=2
p
det�s

e�x
T��1s x=2; (5)

where �s is a symmetric positive de�nite (covariance) matrix. If the covariance
matrix is written �s = s�0 for some (constant) matrix �0, then the shape-

adapted aÆne scale-space representation satis�es the di�usion equation

@s =
1

2
rT (�0rL) : (6)

This scale-space concept has the attractive property that it is closed under aÆne
transformations, which is a highly useful property in tasks such as �rst-order
shape estimation, stereo matching and 
ow estimation (Lindeberg 1994b).

Temporal and spatio-temporal domains. If we, relax the condition that Fourier
transform of the Green's function should be real, then we obtain a scale-space
generated by velocity-adapted Gaussian kernels (see also (Florack et al. 1992))

g(x; �s; v) =
1

(2�)D=2
p
det�s

e�(x�vs)
T��1s (x�vs)=2; (7)

which for a given �s = s�0 and a given vs = sv0 satisfy the di�usion equation

@s =
1

2
rT (�0rL)� vT0 rL: (8)

This structure can be interpreted as a simple model for scale-spaces on temporal
and spatio-temporal domains. Speci�cally, this model allows the following phe-
nomena to be captured: (i) receptive �elds may be adapted to velocity estimates



and thus follow image structures as they move over time, (ii) receptive �elds at
coarse temporal scales can be associated with a certain time delay.

Unless det�0 = 0, however, the support regions of all �lters cover the entire
domain, and there are no non-trivial semi-groups of time-causal scale-space ker-
nels in this �lter class. As we shall see in next section, however, corresponding
arguments in the discrete case do indeed give rise to a richer structure.

3 Non-enhancement of local extrema: Discrete signals

For signals de�ned on a discrete domain, it can be shown that non-enhancement
of local extrema implies that the scale-space family L : ZZD � IR+ ! IR of any
discrete signal f : ZZD ! IR must satisfy the semi-discrete di�erential equation

(@sL)(x; s) = (AL)(x; t) =
X
�2ZZD

a�L(x� �; s); (9)

for some in�nitesimal scale-space generator A characterized by

{ the locality condition a� = 0 if j�j1 > 1,
{ the positivity constraint a� � 0 if � 6= 0, and
{ the zero sum condition

P
�2ZZD a� = 0.

This result follows from similar arguments as the proof of Theorem 4.10 in
(Lindeberg 1994b), if the spatial symmetry requirements are relaxed.

In compact operator notion, the solution to (9) at can be written L = esAf .
To give a more explicit parametrization of the �lter class spanned by this con-
struction, let us introduce the following basic di�erence operators, and use them
as a basis for expressing the degrees of freedom in the coeÆcients a�:

(Æxf)(x) = (f(x+ 1)� f(x� 1)) =2; (10)

(Æ�f)(x) = f(x) � f(x� 1); (11)

(Æxxf)(x) = f(x+ 1)� 2f(x) + f(x� 1): (12)

3.1 1{D discrete spatial domain

On a one-dimensional spatial domain, the class of permissible �lter kernels (with
coeÆcients cn (n 2 ZZ)) generated by (9) can then be written as the solution to

@sL = �Cx ÆxL+
Cxx

2
ÆxxL; (13)

where Cxx > 0 and jCxj � Cxx are necessary conditions for the non-central �lter
coeÆcients to be non-negative. >From the associated generating function

'(z) =
X
n2ZZ

cnz
n = es

P
�2ZZ

a�z
�

= es (Cx (z�z
�1)=2+Cxx (z�2+z

�1)=2);



we get mean M = 'z(1) = �sCx and variance V = 'zz(1) + 'z(1) � '2z(1) =
sCxx (measured in units of the grid spacing). Hence, this scale-space concept
allows signals to be translated during the smoothing process (without any need
for explicit warping), and the amount of di�usion (given by Cxx) imposes a
bound on the amount of translation (given by Ct) that can be performed, given
the positivity constraint on the in�nitesimal scale-space generator A.

In the symmetric case, Cx = 0, this family reduces to the discrete scale-space
generated by convolution with the discrete analogue of the Gaussian kernel

L(x; s) =

1X
n=�1

T (n; s) f(x� n) where T (n; s) = e�sIn(s):
(14)

where In are the modi�ed Bessel function of integer order. (Here, we have without
loss of generality set Cxx = 1.)

3.2 1{D discrete temporal domain

On a one-dimensional temporal domain, temporal causality implies that we must
require that a1 = 0. The remaining degree of freedom can be parametrized by

@sL = �Ct Æ�L; (15)

(where we without loss of generality can set to Ct = 1). This gives rise to a
Poisson-type temporal scale-space, generated by convolution with Poisson kernels

L(x; s) =

1X
n=�1

p(n; s) f(x� n) where p(n; s) = e�s
sn

n!
(16)

having mean M = �s and variance V = s. Notably, this family has no corre-
sponding semi-group structure on continuous time respecting temporal causality.

3.3 2{D discrete spatial domain

On a two-dimensional spatial domain, additional degrees of freedom arise in
terms of the eccentricity of the �lter and its orientation. The discrete counterpart
of the aÆne Gaussian scale-space in (5) and (6) is obtained if we require the �lter
kernels in (9) to be mirror symmetric through the origin, i.e., ai;j = a�i;�j .

With the di�erence operators Æxy = Æx Æy and Æxxyy = Æxx Æyy, the resulting
discrete aÆne Gaussian scale-space (allowing for discrete shape adaptation) can
be parametrized as the solution to the semi-discrete di�erential equation

@sL =
1

2
(Cxx ÆxxL+ 2Cxy ÆxyL+ Cyy ÆyyL) +

Cxxyy

4
ÆxxyyL; (17)

where the in�nitesimal generator has a computational molecule of the form

A =
1

2

0
@�Cxy=2 Cyy Cxy=2

Cxx �2(Cxx + Cyy) Cxx

Cxy=2 Cyy �Cxy=2

1
A+

Cxxyy

4

0
@ 1 �2 1
�2 4 �2
1 �2 1

1
A :

(18)



This representation can be interpreted as a second-order discretization of the
di�usion equation (6) associated with the continuous aÆne Gaussian scale-space

@sL = 1
2 (Cxx Lxx + 2Cxy Lxy + Cyy Lyy); (19)

where Cxx > 0 and CxxCyy � C2
xy > 0 are necessary requirements for the oper-

ator to be elliptic. The free parameter Cxxyy (which controls the addition of a
discretization of the mixed fourth-order derivative Lxxyy) must satisfy

jCxyj � Cxxyy � min(Cxx; Cyy) (20)

to ensure that all non-central coeÆcients are non-negative. (In practice, the
feasibility condition jCxyj � min(Cxx; Cyy) arising from this positivity constraint
is always more restrictive than the condition jCxyj �

p
CxxCyy for the operator

to be elliptic. This implies that highly eccentric aÆne Gaussian kernels cannot
be represented by non-negative discrete scale-space kernels on a square discrete
grid, unless the �lters are approximately aligned to the coordinate directions.
A more detailed analysis shows that this e�ect starts to occur when the ratio
between the eigenvalues of the covariance matrix � exceeds � = 3+2

p
2 � 5:8.)

To appreciate the importance of Cxxyy also in the isotropic case (Cxx =
Cyy = 1, Cxy = 0), introduce discrete approximations r2

5 and r2
�2 to the 2{D

Laplacian operator r2 by (r2
5f)0;0 = f�1;0 + f+1;0 + f0;�1 + f0;+1 � 4f0;0 and

(r2
�2f)0;0 = 1=2(f�1;�1 + f�1;+1 + f+1;�1 + f+1;+1 � 4f0;0), and reparametrize

(17) as @sL = 1
2

�
(1� 
)r2

5L+ 
r2
�2L

�
. Then, it can be shown that 
 = 1=3

gives the lowest degree of rotational asymmetry in the Fourier domain.

3.4 1+1{D discrete spatio-temporal domain

To obtain an intuitive understanding for spatio-temporal data, let us �rst study
the case with one spatial dimension (represented by x) and one temporal di-
mension (represented by t). The general conditions in (9) then give that the
computational molecule of A has to be of the form

A =

0
@ 0 0 0
A �F E
B C D

1
A (21)

for some constants A;B;C;D;E > 0 and F = A + B + C + D + E. With Æt
denoting the (backward di�erence) Æ�-operator in the t-direction, Æxt = Æx Æt
and Æxxt = Æxx Æt, it can be shown that this family can be parametrized as

@sL = �Cx ÆxL� Ct ÆtL+
1

2
(Cxx ÆxxL+ 2Cxt ÆxtL) +

3

6
Cxxt ÆxxtL;

where Cxx; Ct > 0 and non-negativity of non-central coeÆcients implies that

� Cxx � Cx � Cxx; (22)

� Ct � Cxt � Ct; (23)

jCxtj � Cxxt � Ct: (24)



>From the generating function of the corresponding �lter, we then get the mean
vector M and the covariance matrix V as

M = �s
�
Cx

Ct

�
; V = s

�
Cxx Cxt

Cxt Ct

�
: (25)

Thus, by varying Cx, Ct, Cxx within the constraints (22), (23) and (24), we can
reach a four-dimensional subset of the �ve-dimensional manifold spanned by all
variations of mean vectors and covariance matrices in two dimensions.

Parametrization of �lter shapes. To give a more explicit parametrization of this
�lter class, let us introduce descriptors P , C, S and Q by

P = Cxx + Ct; C = Cxx � Ct; S = 2Cxt Q =
p
C2 + S2:

Then, the eigenvalues of V are given by �1;2 =
1
2 (P �Q) and an eigenvector nor-

malized to unit length in the t-direction can be written � = ( _x; 1) = (tan�; 1),

tan� = signS arctan

s
Q� C

Q+ C
; (26)

corresponding to the following relation between C and S: ( _x2 � 1)S = 2 _xC.

Velocity adaptation. When studying image structures that move over time, it is
natural to adapt the shape of the spatio-temporal �lter kernel to the direction
of motion. A basic motivation for such an approach is to avoid excessive motion
blur when observing moving objects at coarse time scales.

Given a velocity estimate _x = tan� (in units of the grid spacing) and a
speci�cation of the amount of smoothing in terms of the eigenvalues of V (now
for convenience denoted �xx and �t), we can parametrize Cxx, Cxt and Ct by�

Cxx Cxt

Cxt Ct

�
=

1

1 + _x2

�
�xx + _x2 �t � _x (�xx � �t)
� _x (�xx � �t) �t + _x2 �xx

�
: (27)

To illustrate how the positivity constraints (22), (23) and (24) restrict the per-
missible values of �xx and �t, let us consider the limit cases when j _xj << 1 and
j _xj >> 1. Then, straightforward calculations lead to the following conditions:

j _xj�xx � �t � 1

j _xj �xx (j _xj << 1); (28)

1

j _xj �t � �xx � j _xj�t (j _xj >> 1): (29)

In other words, at low image velocities on the image domain, the spatial scale
imposes a constraint on which temporal scales are meaningful, whereas at high
velocities, the temporal scale restricts which spatial scales are meaningful.



In certain situations, it is natural to couple also the mean values of the �lter
(the spatial shift and the temporal delay) in an analogous way:

�
Cx

Ct

�
= Ct

�
_x
1

�
=

�t + _x2 �xx
1 + _x2

�
_x
1

�
: (30)

Then, however, the positivity condition jCxj < Cxx combined with jCxj = j _xjCt

implies that non-negative velocity-adapted �lters only exist when j _xj < 1.

To allow for such complete velocity adaptation at high velocities, we should
thus rather send control signals to the image acquisition system, to allow the
brightness pattern to be stabilized in the image domain (tracking/�xation).

Kernel graphs. Figure 1 shows a few examples of �lters from this family, for
di�erent values of �xx, �t and _x. Observe how we in this way can generate
discrete receptive �eld pro�les with desirable spatio-temporal characteristics.

When _x = 0, this scale-space is separable, corresponding to the tensor prod-
uct between the spatial and temporal scale-space representations (14) and (16).

3.5 2+1{D discrete spatio-temporal domain

The most interesting situation for a visual observer is of course a spatio-temporal
image domain with two spatial dimensions and one temporal dimension.

If we consider a general three-dimensional in�nitesimal generator of the form
(9) and require all coeÆcients a� = ax;y;t to be zero when time t is positive, we
then obtain a computational molecule with 17 degrees of freedom. Out of these, 8
degrees of freedom will in
uence the mean values and the covariance matrices of
the �lters, while the only restriction on the remaining 9 degrees of freedom will be
in terms of intervals (in analogy with Cxxyy in the 2{D discrete aÆne Gaussian
scale-space and Cxxt in the 1+1{D discrete spatio-temporal scale-space).

With di�erence operators de�ned in an analogous way as in previous sections
(implying that all di�erences in the time direction are based on the backward
di�erence operator ÆtL(x; y; t) = L(x; y; t) � L(x; y; t � 1)), this �lter class can
be parametrized as the solution to a di�erential equation of the form

@sL =� Cx ÆxL� Cy ÆxL� Ct ÆtL (31)

+
1

2
(Cxx ÆxxL+ 2Cxy ÆxyL+ Cyy ÆyyL+ 2Cxt ÆxtL+ 2Cyt ÆytL)

+ combinations of 1st- and 2nd-order di�erences w.r.t. x, y and t:

Hence, this �lter family allows for both shape adaptation in the spatial domain
(variations of Cxx, Cyy and Cxy) and velocity adaptation between the temporal
and spatial dimensions (variations of Cx, Cy, Ct, Cxx, Cyy, Cxt and Cyt).

A detailed analysis of the structure and properties of this scale-space is given
in (Lindeberg 1996). Similar constructions can be done in higher dimensions.



3.6 Connection equations for multi-parameter scale-spaces

So far, we have mainly considered di�erential equations depending on a single
evolution parameter (termed s). The shapes of the �lters, however, are deter-
mined by a multi-dimensional set of �lter parameters (Cx, Cxx, Cxy, Ct, etc.).

To analyse how �lters with di�erent shapes are related di�erentially, con-
sider any of the semi-discrete di�erential equations in (13), (15), (17), (22)
and (31). Introduce multi-index notation by x! = x!11 x!22 : : : x!DD , where x =
(x1; x2; : : : ; xD) are coordinates on the D-dimensional discrete domain, and let
Æx! represent a di�erence operator of order !i along the ith dimension. More-
over, let 
x! denote the (Taylor) coeÆcient used for normalizing each coeÆcient
Cx! for ! 2 
. Then, any such semi-di�erential equation can be written:

@sL =
X
!2



x! Cx! Æx! : (32)

Furthermore, let Æ̂x!(z) denote the generating function of the di�erence operator

Æx! (e.g., Æ̂x1(z) = (z1 � z�11 )=2). Then, the generating function ĥ(z) of the
Green's function of (32) at scale s = 1 assumes the form

ĥ(z) = eÂ(z) = exp

 X
!2



x! Cx! Æ̂x!(z)

!
=
Y
!2


exp
�

x! Cx! Æ̂x! (z)

�
;

and under small variations of any Cx! , the Green's function h(x) satis�es

@Cx!h = 
x! Æx!h: (33)

In other words, if we de�ne an j
j-parameter scale-space representation L of
any signal f by considering the solution of (32) at s = 1 for all combinations of
Cx! such that

P
!2
 Cx! Æx! satis�es the positivity condition in (9), then for

any Cx! this scale-space representation satis�es

@Cx!L = 
x! Æx!L: (34)

In other words, this structure shows how representations at coarser scales can
be constructed from representations at �ner scales in an incremental fashion:

L(�; C +�s�C) = L(�; C +�s
X
!2


�! Cx! ) � L(�; C) +�s@CL(�; C):
(35)

Of course, we should always choose the directional derivative operator @C

@C =
X
!2


�! @Cx! (�! 2 IR) (36)

such that the corresponding spatial derivative operator (obtained from (34))

B =
X
!2


�! 
x! Æx! (37)



satis�es the positivity conditions of the in�nitesimal scale-space generator in (9).
(By construction, the locality and zero sum conditions are already satis�ed.)

Moreover, stability requirements restrict the magnitude of �s. Observe, how-
ever, that these operations only depend on nearest-neighbour relations. Thus,
they are highly suitable for parallel implementation on �ne-grained architectures.

3.7 Relations between the continuous and discrete models

>From the central limit theorem, it follows that the discrete �lters generated
by (9) will approach Gaussian kernels when the evolution parameter s tends to
in�nity. Moreover, the algebraic structure of the mean values and the covari-
ance matrices of the scale-space �lters is similar in the continuous and discrete
domains. In this respect, the continuous theory in section 2 can be regarded as
an idealized model of the discrete theory in in section 3 when grid e�ects are
negligible.

The advantage of the discrete model is that allows for a well-founded transi-
tion to coarse scales, such that all �lters are scale-space kernels also in a discrete
sense. Moreover, temporal causality holds exactly for the discrete �lter class.

4 Relations to previous work

In his pioneering scale-space formulation for temporal data, (Koenderink 1988)
transformed the time axis by mapping the present moment to the unreachable
in�nity. He introduced a time delay t0 describing how long it takes before changes
in the input can be perceived, and applied Gaussian convolution in transformed
domain. In the original time domain, this corresponds to convolution by kernels
of the form (where �t approximates the variance when �t << t0):

h(t; t0; �t) =
1p
2� �t

�
t

t0

�� t0

2�2
t

log
�

t
t0

�
�1

(38)

Based on one-dimensional scale-space kernels, which guarantee non-creation of
local extrema with increasing scales and respect the time direction as causal
(Lindeberg 1990), (Lindeberg and Fagerstr�om 1996) expressed a strictly time-
recursive temporal scale-space model, in which temporal derivatives are com-
puted from di�erences between temporal channels at di�erent scales. A similar
computation of temporal derivatives has been used by (Fleet and Langley 1995).

The spatio-temporal scale-space model presented here has several similarities
to these models, when projected to a pure temporal domain (section 3.2). The
shapes of the resulting �lter kernels and their temporal derivatives are qualita-
tively similar to those in (38), if the time delays and the variances are appro-
priately adapted. Moreover, from (15) it follows that derivatives with respect to
time are equal to derivatives with respect to temporal scale.

In addition, if we implement this scale-space model in terms of strictly time-
recursive operations (such as a cascade of �rst-order recursive �lters), then the



Poisson-type scale-space at scale � corresponds to the limit case when the number
N of �lters tends to in�nity, while their individual variances �=N tend to zero.

For a more general review of �lter-based approaches to motion estimation,
see e.g. the paper by (Barron et al. 1994) and the references therein.

5 Relations to biological vision

In a recent review, (DeAngelis et al. 1995) present an overview of recent results
on temporal response properties of receptive �elds (RFs) in the central visual
pathways. Foremost, the authors point out the limitations of de�ning receptive
�elds in the spatial domain only, and emphasize the need to characterize RFs
in the joint space-time domain, in order to describe how a neuron processes the
visual image. Then, for the basic cell types in the LGN and the striate cortex,
they essentially describe the spatio-temporal response characteristics as follows:

For LGN neurons , which have approximately circular center-surround orga-
nization, most RFs are space-time separable, and there are two main classes of
temporal responses. In a \non-lagged cell", the �rst temporal lobe is usually the
largest one, whereas for a \lagged cell", the second lobe typically dominates.

Such temporal response properties are typical for �rst- and second-order tem-
poral derivatives of a temporal scale-space representation. The spatial response,
on the other hand, shows a high similarity to a Laplacian of a Gaussian.

For simple cells in the striate cortex, which have spatially oriented RFs, the
response properties range from separable to strongly inseparable, where a ma-
jority exhibit marked space-time inseparability. The temporal pro�le is typically
biphasic, although some cells have monophasic or triphasic responses.

In terms of temporal derivatives, such behaviour arises from �rst-, zero- and
second-order derivatives, respectively. Concerning the spatial response charac-
teristics, there is a high similarity with derivatives of Gaussians (Young 1987).
In fact, for all these linear RFs, spatio-temporal �lters with similar response
characteristics can be generated by applying di�erence operators of low orders
to the spatio-temporal �lters obtained from (27).

Motion selectivity. Concerning motion selectivity, most cortical neurons are quite
sensitive to stimulus velocity, and the speed tuning is more narrow than for
LGN cells. Simple cells with inseparable RFs have directional preference, while
cells with space-time separable RFs do not. Moreover, the preferred direction of
motion corresponds to the orientation of the �lter in space-time.

This structure is nicely compatible with velocity adaptation, as described
in section 3.4. Moreover, with regard to the dominance of biphasic temporal
response pro�les for simple cells, it is interesting to note that spatio-temporal
derivatives corresponding to �rst-order derivatives in the time direction, (more
precisely Æxt and Æt) constitutes a key source of information for controlling the
�lter shapes for shape adaptation according to (27).



Successive construction of RFs. (DeAngelis et al. 1995) also discuss how spatio-
temporal RFs transform along the geniculostriate pathway to increasingly spe-
cialized characteristics. Notably, such a construction is straightforward to carry
out within the presented spatio-temporal scale-space framework.

>From Laplacian-type receptive �elds at the lowest level of a computational
hierarchy, it is always possible to reconstruct (the rotationally symmetric) scale-
space representation by integrating Laplacian responses over scales. Then, a zero-
order temporal scale-space representation can always be constructed in a similar
way by integrating �rst- (or second-order) temporal derivatives. Alternatively,
or both, temporal scale-space smoothing can be implemented as a cascade of
�rst-order integrators (or recursive �lters) over time.

Then, from such a separable spatio-temporal scale-space representation, non-
separable spatio-temporal receptive �elds as well as elongated receptive �elds in
the spatial domain can be constructed from the connection equations (34), (35).

Finally, spatial derivative approximations can be computed from spatial dif-
ferences of this representation, and temporal derivative approximations be ob-
tained from di�erences between temporal channels. Since all these operations are
linear, it follows that scale-space properties transfer from the spatio-temporal
scale-space representation to its spatio-temporal derivatives (Lindeberg 1994b).

6 Summary and discussion

We have presented a theory for scale-space representation of spatio-temporal
data. Starting from a general condition about non-creation of structure with in-
creasing scales in terms of non-enhancement of local extrema, a complete charac-
terization has been given of the semi-groups of convolution transformations that
obey this requirement on di�erent types of image domains. The resulting theory
comprises several of the existing continuous and discrete scale-space theories on
symmetric spatial domains. In addition, it provides the following extensions:

{ An explicit discrete mechanisms for shifting data during a discrete smoothing
process, without explicit need for external warping.

{ A discrete theory for elongated scale-space �lters in the spatial domain,
allowing for discrete shape adaptation to local image structures.

{ A consistent scale-space representation over discrete time, which respects
the time direction as strictly causal and preserves the semi-group structure.

{ Simultaneous, i.e. non-separable, treatment of spatial and temporal domains.
{ Velocity adaptation of spatio-temporal �lters in the direction of motion.
{ Connection equations allowing �lters of di�erent shapes and at di�erent
scales in a multi-parameter scale-space to be constructed incrementally.

Whereas such mechanisms could also be constructed on an intuitive basis, it has
been shown that they arise as consequences of a small set of scale-space axioms.

Moreover, the computational structure shows interesting qualitative similar-
ities to recent �ndings on spatio-temporal receptive �elds in biological vision.



Further extensions. Throughout this treatment, we have considered square grids
having the same uniform spatial sampling at all scales. More generally, similar
arguments based on non-enhancement of local extrema can be carried out on
other discrete topologies, such as hexagonal lattices or irregular grids.

The only di�erence in such situations will be that the spatial summation
over nearest-neighbours in (9) should be replaced by a summation over nearest-
neighbours de�ned from the appropriate connectivity concept. The locality, pos-
itivity and zero sum conditions transfer in a straightforward manner.

Similar extensions can be performed by decreasing the spatial and temporal
sampling densities at coarser spatial and temporal scales. Besides the substantial
data reduction by such a subsampling operation, it has the attractive property
of increasing the range of velocities that can be captured by velocity adaptation.
(Recall that for complete velocity adaptation, positivity of non-central �lter
coeÆcients implies a bound on the velocity relative to the grid spacing.)

Such an extension is also nicely compatible with foveated sensors, since large
motions can be captured in the periphery, and guide �xation processes which
enable �ne-scale structures to be resolved at higher resolution in the fovea.

Further relaxation of scale-space axioms. More generally, one could also conceive
of relaxing the requirement about translational invariance in the temporal do-
main, such that the �lter family is not required to be a semi-group of convolution
kernels. Such extensions are studied in more detail in (Lindeberg 1996).
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Fig. 1. Discrete velocity-adapted spatio-temporal �lters in the 1+1{D spatio-temporal
scale-space obtained by varying the eigenvalues �xx and �t in the covariance matrix
(27) for a given velocity _x. For each receptive �eld, the horizontal dimension represents
space and the vertical dimension time (with the origin at the image center). Here, it
should be noted that the �lter in the upper left corner violates the positivity conditions,
which results in a negative lobe. (For this �lter, the spatial translation Cx = _xCt is too
large relative to the spatial smoothing Cxx.) The parameter settings were �xx = 4; 8; 16
from left to right, �t = 4; 8; 16 from bottom to top.

Fig. 2. Examples of discrete spatio-temporal derivative approximations obtained by
applying (discrete approximations to) directional derivative operators in xt-space to a
zero-order velocity-adapted spatio-temporal receptive �eld g obtained from (27). With
Æ
~x, Æ ~xx and Æ

~t
denoting �rst- and second-order directional derivative operators in tilted

xt-space (with orientation given by � = arctan _x), the �gures show from left to right:
Æ
~x~xg, Æ~tg, Æ~x~tg and Æ

~x~x~t
g. (Parameter settings: �xx = 8, �t = 16, _x = 0:25.)



Spatio-temporal scale-space representation (at �ne spatial scales)
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Spatio-temporal derivatives at di�erent spatio-temporal scales
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Fig. 3. Illustration of how spatio-temporal events can be perceived in di�erent ways
depending on the scale of observation. This �gure shows four combinations of spatial
and temporal scales in a separable spatio-temporal scale-space computed from a scene
where two small size objects and two large size objects move at low and high speeds.
Observe how we for di�erent combinations of speeds and object sizes obtaine quali-
tatively di�erent types of responses at di�erent spatio-temporal scales. (These results
have been obtained from a time-recursive approximation (Lindeberg and Fagerstr�om
1996) of the scale-space concept presented in this article.)


